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ABSTRACT 
The goal of this paper is to understand how people assess human-
likeness in human- and AI-generated behavior. To this end, we 
present a qualitative study of hundreds of crowd-sourced assess-
ments of human-likeness of behavior in a 3D video game navigation 
task. In particular, we focus on an AI agent that has passed a Tur-
ing Test, in the sense that human judges were not able to reliably 
distinguish between videos of a human and AI agent navigating 
on a quantitative level. Our insights shine a light on the charac-
teristics that people consider as human-like. Understanding these 
characteristics is a key frst step for improving AI agents in the 
future. 
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1 INTRODUCTION 
A core goal of artifcial intelligence research is to build artifcially 
intelligent (AI) agents (computational characters or entities) ca-
pable of learning and displaying complex human-like behavior 
[4]. Achieving human-like behavior is a milestone towards future 
agents that can fexibly collaborate with people in shared human-AI 
environments. Without the ability to perform tasks in a human-
like or human-compatible manner, achieving high skill alone is 
likely insufcient. For example, in a shared human-AI driving set-
ting, AI drivers must behave sufciently human-like for human 
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drivers to interpret, anticipate, and act in their presence [13]. Fur-
thermore, researchers have identifed human-AI compatibility as a 
key milestone towards a wide range of robotics applications [22]. 
In a nearer-term future application, achieving human-like behavior 
of artifcial agents in video games promises new engaging game 
experiences to delight billions of players [7]. An open challenge in 
developing such human-like agents is understanding what charac-
teristics are considered human-like. Understanding the behaviors 
that contribute to people’s perception of human likeness is a foun-
dational frst step towards achieving general human-like behavior 
of artifcial agents in human settings. 

In this work, we contribute to the goal of identifying human-like 
behaviors. Specifcally, we focus on a 3D video game navigation 
setting. We leverage the recently-proposed Human Navigation Tur-
ing Test (HNTT) [9], in which participants distinguished between 
human and AI-generated navigation behavior in a video game and 
explained their decisions. We run a behavioral study on Amazon 
Mechanical Turk (MTurk) and analyze a data set of 426 free-form 
responses to the HNTT to gain insights into the behaviors that 
human judges perceive as characteristic of AI or people. 

We fnd clear diferences in the way that human judges perceive 
human and AI behavior. We also fnd preliminary indicators that 
expectations about AI behavior may be more stable than those 
of human behavior. We fnd more nuance when considering the 
concept of “human play”: in particular, human judges struggle to 
identify what constitutes human play when presented with a more 
human-like AI. 

2 RELATED WORK 
This work focuses on studying human-like behavior in the context 
of navigation. Navigation is a well-studied task in biological settings 
[8] and fundamental to biological intelligence embodied within 
the real world [12, 19]. Navigation is also a crucial in many video 
games and a key area of interest for game developers [1]. Prior 
work has focused on enabling robots to demonstrate this ability. 
The problem of Simultaneous Localization and Mapping (SLAM) 
was established formally by Borthwick and Durrant-Whyte [3], 
building on an earlier line of work [10]. When applied to simulated 
environments (e.g., video games) the problem is simplifed, as we 
can assume the precise location of the agent and a complete map 
of the environment is known. These simplifcations enable the use 
of A* search on nav-meshes as a common approach to navigation 
in 3D games for over two decades [25]. These approaches provide 
a range of algorithms specifc to the challenges of 3D navigation. 
However, we desire methods that can be applied to a broader set of 
sequential decision-making problems. 

Reinforcement learning (RL) [26] provides a more generally ap-
plicable set of algorithms for learning to control agents in settings 
including (but not limited to) 3D navigation problems in modern 
game environments [1]. RL trains an agent to perform a task by 
learning to maximize a (usually) hand-crafted reward, or score, 
that tells the agent how well it is doing on that task. Crafting this 
reward is referred to as reward shaping [27]. Although agents can 
learn efective navigation, they make no consideration for the style 
with which they act [1]. If these approaches are to be adopted in 
commercial game development, practitioners have frmly asserted 

that controlling style is essential [16]. As an extreme example, RL 
approaches that have recently defeated world champion human 
players at modern games demonstrated unusual behaviors that 
made collaborative play between human and AI in mixed teams far 
less successful [2]. 

Prior approaches [1, 2] are evaluated by quantitative measures 
and not on how humans may perceive them. We argue (and it 
has recently been demonstrated [24]) that for an agent to collab-
orate well with a human, how that agent’s behavior is perceived 
by humans is of critical importance. Early eforts to measure how 
people perceive agent behavior in video games [14] struggled to 
diferentiate between human and agent play styles. More gener-
ally, evaluating human perception of artifcially intelligent systems 
varies across disciplines and no central benchmark exists today. In 
robotics, promising quantitative approaches have been proposed, 
such as the human-likeness index for robot path evaluation [11]. 
However, this index does not account for human perception of the 
computed paths. Kahn et al. [17] proposed a set of psychological 
benchmarks for humanoid robot evaluation but did not validate 
them in an experimental setting. Closer to our work, Kim et al. 
[18] studied players’ evaluations of human-likeness of AI bots in 
StarCraft using a scoring framework and evaluation of short-text 
responses. The paper analyzes top-performing AI bots but does 
not consider AI designed to exhibit human-like behaviors. More 
recently, Devlin et al. [9] proposed the Human Navigation Turing 
Test (HNTT) as an open challenge in which to learn human-like 
behavior. We leverage this experimental setup, but propose and 
perform a deeper qualitative evaluation of human assessments of 
AI and human behavior. 

3 METHOD 
Here we discuss our methods, starting from a high-level overview of 
the relevant components. We focus on an established 3D navigation 
task, and summarize this task, as well as collection of human player 
data on this task in Section 3.1. Contrasted with human navigation 
data is our agent-generated navigation data; we detail the agent 
architectures and data collection protocol in Supplemental Research 
Methods B.1. Next, we turn to the key focus of the present study: 
collecting human assessments of human-likeness and free form 
justifcations of these assessments (Section 3.2). Finally, we detail 
our data analysis approach in Sections 3.3 (quantitative analysis) 
and 3.4 (qualitative analysis). 

3.1 Navigation Task and Data 
We focus on the navigation task introduced by Devlin et al. [9], 
illustrated in Figure 1. A human player or AI agent completing the 
task starts in the area visible at the bottom of the mini-map. They 
are tasked to navigate to one of the 16 goal locations, selected at 
random at the start of each trial. Human players experience the task 
from a third-person perspective, as shown in Figure 1. They also 
have access to the mini map indicating the current player position 
and goal location. In the third-person view, the goal location is 
visible as light blue containers once in view (e.g. at the back of the 
screenshot). 

3.1.1 Human Navigation Data. Building on the established nav-
igation task [9] allows us to use the human navigation data and 
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Figure 1: Navigation task as experienced by human players 
(screenshot, left), and detail of the mini map of the game 
level (right). Screenshot is not representative of the fnal 
game visuals. 

videos from their work.1 The human player data was collected from 
individuals who were familiar with the game and the map. For addi-
tional details on sampling human player data and post-processing 
steps, see Supplemental Research Methods A.1 and Devlin et al. [9]. 

3.1.2 Agent Navigation Data. Our method asks human judges for 
relative comparisons between pairs of human and AI navigation 
behavior. We consider three AI agents, designed to refect state-
of-the-art machine learning approaches to navigation and provide 
a spectrum of human-likeness. Our agents closely align with the 
symbolic and hybrid agents proposed by Devlin et al. [9]. These 
agents are diferentiated based on how they observe the navigation 
environment; see Supplemental Research Methods A.2 for more 
details. These agents successfully learned to navigate; however, 
human judges could identify their learned behavior as decidedly 
non-human [9]. For our study, we use the symbolic and hybrid 
agents; however, we augment these agents based on insights into 
behaviors that they exhibited that people likely identifed as being 
non-human. To even more closely align with these expectations, 
we design and introduce a novel reward shaping agent. 

We visually inspected the learned navigation behavior of the 
symbolic and hybrid baseline agents and isolated three classes of 
problematic behavior. Agents would: (1) swing camera angles wildly 
or make sudden turns, (2) collide frequently with walls, and (3) 
sometimes move more slowly than ideal. To correct these behaviors, 
we use reward shaping, a simple yet efective approach to achieving 
desired qualities in agent behavior [21]. We design the reward signal 
as follows. To combat the problematic behavior, we introduce: (1) 
a camera angle diference penalty for swift camera angle changes 
over a set 0.15 diference threshold value, (2) a 0.05 penalty for any 
wall collisions, and (3) a penalty of 0.01 if the distance traveled 
between steps is lower than a set 220 threshold value specifc to 
the environment. 

Our novel reward shaping agent learns to navigate using reward 
explicitly designed to reduce human-perceived diferences between 
human and AI agent behavior. This agent extends the baseline hy-
brid agent with additional reward components and a fner-grained 
action space. We introduce the reward components to explicitly 

1Data use under MSR-LA license. License details can be found in the original authors’ 
GitHub: https://github.com/microsoft/NTT. 

Figure 2: Example of one HNTT trial. Screenshots are not 
representative of the fnal game play or visuals. 

encourage learning human-like behavior and the fner-grained ac-
tion space to enable smoother control and avoid abrupt turns when 
combined with reward shaping. We extend the action space to 14 
discrete actions, providing 3 additional degrees of turning left/right, 
compared to the baseline agents. The updated list of degrees for 
this agent is (±0.2, ±0.4, ±0.5, ±0.6, ±0.8 and ±1.0). Human judges 
cannot reliably distinguish this agent from human behavior using 
a Navigation Turing Test (which we show in Section 4), making the 
qualitative insights on perceived diferences particularly valuable. 

We train each of the three agent architectures for 15 hours, the 
equivalent of 10 million training timesteps, on at least 3 diferent 
random seeds, and confrm training has converged by inspecting 
training curves (more details in Supplemental Research Methods 
B.1). For each agent we select the latest training model checkpoint. 
Finally, to generate the agent navigation data, we roll out 100 navi-
gation runs, then sample from these to match the goal locations of 
the human data (see Supplemental Research Methods A.1). 

3.2 Data Collection: Assessing 
Human-Likeness 

Our data collection approach follows the setup of the Human Navi-
gation Turing Test (HNTT) behavioral study design [9]. Each hu-
man judge is asked to complete a survey comprising of 10 Turing 
Test trials (Figure 2). In each trial, the judge watches two side-by-
side video stimuli of humans or AI agents completing the navigation 
task and answer 3 questions. First, a binary choice: “Which video 

https://github.com/microsoft/NTT
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navigates more like a human would in the real world?”. Then, a 
free-form response: “Why do you think this is the case? Please pro-
vide details specifc to the videos on this page.” Finally, a multiple 
choice: “How certain are you of your choice?”, where the options 
range from "extremely uncertain" to "extremely certain" on a 5-
point Likert scale. Supplemental Research Methods B.4 contains 
screenshots of the survey questions. 

We completed 3 studies with a within-subject design, where all 
human judges viewed the same 10 trials per study, and the trials 
were presented in a randomized order per judge. In each survey, 6 
trials were human-vs-agent comparisons, and 4 trials were agent-
vs-agent comparisons. We exclude the agent-vs-agent trials in this 
work. Study 1 tested human vs. hybrid agent (50 subjects), Study 2 
tested human vs. symbolic agent (50 subjects), and Study 3 tested 
human vs. reward shaping agent (92 subjects) (total: 192 completed 
surveys). 

The earlier study [9] relied on a smaller pool of locally-recruited 
assessors; however, our judgments were collected on the Amazon 
Mechanical Turk (MTurk) crowd-sourcing platform [20]. MTurk is 
widely used for data collection as it provides the beneft of scalabil-
ity, as long as appropriate steps for quality control are implemented 
[15]. The MTurk participant requirements were: location is United 
States, age is 18 or older, language is English. We did not collect 
demographic information or any other personally identifable in-
formation. To target more experienced MTurk Workers, we set 
the following Human Intelligence Task (HIT) qualifcations: HIT 
Approval Rate greater than 98%, Number of HITs Approved greater 
than 500, and a qualifcation to prevent repeat responses. To incen-
tivize quality, we included a bonus payment for each high-quality 
response. We reviewed the free-form answers in each response 
to distinguish high-quality versus low-quality or suspected bot 
responses; for example, responses with high instances of typos, 
copy/pasted answers, or nonsensical wording were identifed as 
low-quality and excluded from analysis. We paid all participants 
who completed the task for the HIT, even if their response was 
identifed as low-quality. The low-quality responses did not receive 
the bonus payment. We paid on average 15 USD per hour. We ob-
tained approval for our studies from our Institutional Review Board 
(IRB) and informed consent from each participant. Details of the 
study, as well as description of any potential participant risks, were 
included in the consent form. We include the full text of the MTurk 
HIT instructions in Supplemental Research Methods B.5. 

3.3 Quantitative Data Analysis: Navigation 
Turing Test 

The quantitative analysis of our collected human judgment data 
follows the methodology proposed by Devlin et al. [9] as much as 
possible, to validate our change in crowdsourcing setup (results 
reported in Supplemental Research Methods B.2) and determine 
the degree to which human judges are able to distinguish between 
AI and human behaviors (Section 4.1). 

A key aspect missing from prior work is a frm criterion to estab-
lish whether the Human Navigation Turing Test has been passed by 
an agent, requiring us to establish new methodology. We propose 
a methodology that formalizes the following question: are human 
assessors unable to distinguish between agent and human behavior? 

We implement this criterion as a statistical test that determines 
whether human judges distinguish between human and agent be-
havior at a level that is signifcantly diferent from chance. We 
instantiate this test by computing the 95% confdence interval for 
the median of the human-agent comparisons using bootstrap sam-
pling (a non-parametric approach). If the 95% confdence interval 
includes 0.5 (chance-level agreement), then we determine the agent 
passes the HNTT. 

3.4 Qualitative Data Analysis: Free-form 
Responses 

To analyze the free-form responses from our HNTT, we chose a 
sub-sample of the responses from Study 1 (the hybrid agent) and 
Study 3 (the reward shaping agent) in order to include one agent 
that doesn’t pass the HNTT and one that does. From each study 
we sub-sampled 3 free-form responses per subject, which resulted 
in 426 individual responses for analysis. Responses were randomly 
sub-sampled and shufed to minimize bias. 

We followed a pair coding approach: two human annotators 
reviewed the free-form responses and assigned one or more codes 
that captured behaviors characteristic of AI or Human as perceived 
by human judges. The annotators reviewed an agreement sample 
(60 free-form responses) to converge on a list of 18 codes. When 
constructing the codes, we referenced worked examples of refexive 
thematic analysis [5] and allowed for more meaningful interpreta-
tion. We provide the resulting list of codes and their defnitions in 
Table 1 for reference. The resulting list of codes (with defnitions 
in parentheses) were: Frequent or Infrequent camera move-
ment (how often the camera is moved or zoomed), Smooth or 
Jerky physical movement (relating to movements, trajectory, 
or pathing), Logical or Illogical reasoning (where the character 
does things that do or do not make sense), Related to human 
play or Non-related to human play (relating a behavior to their 
own or human gameplay, often used in a non-descriptive manner, 
e.g., "the navigation has movements which I think can be done by a 
human only"), Wall avoidance or Wall hit (avoiding or running 
into or against walls), Goal direct or Goal indirect (related to goal 
orientation), Frequent or Infrequent mistakes (how often the 
character makes mistakes or corrections), Object avoidance or Ob-
ject hit (avoiding, or running into or against objects), Nonsense 
(Response is not interpretable), and Other (any other characteristic 
that was more rarely mentioned, e.g., "the character jumps more 
often"). Table 2 illustrates an example of a coded response. 

With these codes, the annotators coded the agreement sample. 
We quantifed inter-annotator agreement on this sample by com-
puting a binary Cohen’s Kappa � [6] for each code. Averaging over 
the codes yielded � = 0.511. Each annotator then coded 55% of the 
data sub-sample (234 responses each) to compare agreement on the 
overlapping 10%. For each response, the annotators assigned one or 
more codes under two categories: Human Codes (average � = 0.62) 
and AI Codes (average � = 0.54). 

4 RESULTS 
We present two sets of results. First, we show that our reward-
shaping agent passes the HNTT (Section 4.1). Second, we highlight 
characteristic behaviors and key diferences in how human judges 
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Annotation Codes Defnition 
Frequent camera movement, infrequent camera movement How often the camera is moved, swung, or zoomed 
Smooth physical movement, Jerky physical movement Characteristics relating to movements, trajectory, or pathing 
Logical reasoning, Illogical reasoning Where the character does things that do or do not make sense 
Related to human play, Non-related to human play Where participants relate a behavior to their own or human gameplay 
Wall avoidance, Wall hit Avoiding, or running into or against walls 
Goal direct, Goal indirect Codes related to goal orientation 
Frequent mistakes, Infrequent mistakes How often the character makes mistakes or “corrections” 
Object avoidance, Object hit Avoiding, or running into or against objects 
Nonsense Response is not interpretable 
Other Any other characteristic 

Table 1: Annotation code defnitions. 

Subject Response Free-Form Response Human Codes AI Codes 
B The character in Video B runs in straight lines and Smooth physical movement; Object hit; 

goes to where he needs to be going. The character Goal direct Goal indirect 
in Video A is running in circles, into objects, etc. 

Table 2: Example coded response to the question, "Which video navigates more like a human would in the real world?". High-
lights illustrate annotation process. 

Figure 3: Accuracy of human judges’ assessment of human-
likeness. Human judges assessed the reward shaping agent 
as most human-like. 

perceive AI vs human players (Section 4.2). In particular, we inves-
tigate these characteristic behaviors when the AI agent does and 
does not pass the HNTT. 

4.1 Human Navigation Turing Test 
With the experimental setup described in Section 3.2, we now eval-
uate the human-likeness of our agents as determined by human 
judges. Figure 3 shows the accuracy (agreement with ground truth) 
of human judges when assessing the human-likeness of our re-
ward shaping agent compared to baselines. On average, participants 
achieve a signifcantly lower accuracy (mean=0.49, std=0.22) when 
assessing our reward shaping agent against human players, in com-
parison to the symbolic (mean=0.80, std=0.20, U =710.0, p=0.000) 

and hybrid (mean=0.76, std=0.24,U =863.5, p=0.000) agents. This 
indicates that our approach is judged the most human-like. 

Next, we turn to the question of whether any of the agents in-
cluded in our study passes the HNTT based on the criterion defned 
in Section 3.3. According to our criterion of passing the HNTT, we 
fnd that the symbolic and hybrid baseline agents fail the HNTT, 
whereas the reward shaping agent passes this test of human-likeness. 
Median accuracy has a 95% confdence interval that includes 0.5 
(chance-level agreement), suggesting that human judges cannot 
consistently diferentiate between the reward shaping agent and 
the human player (reward shaping agent, median accuracy=0.50, 
95% CI=[0.50, 0.50]). The symbolic and hybrid baseline agents from 
Devlin et al. [9] do not pass the HNTT according to this criterion. 
We obtain median accuracies of 0.83 (symbolic agent, 95% CI=[0.67, 
1.0]) and 0.83 (hybrid agent, 95% CI=[0.83, 1.0]), indicating human 
judges can distinguish them from humans at signifcantly higher 
than chance level. 

4.2 Qualitative Analysis 
With our qualitative analysis, we seek to answer the following 
research questions: 

(1) Are there key diferences between how people characterize 
behavior that they believe is generated by an AI and that 
which they believe is generated by a human? 

(2) What mistakes do people make when characterizing AI vs. 
human behavior? 

(3) Are there key diferences between how people characterize 
AI vs. human behavior when we compare between AI that 
does and does not pass the HNTT? 

4.2.1 Diferences in Human vs. AI Behavior. We fnd that there are 
indeed diferences between how people characterize AI vs. human 
behavior. We plot the counts of codes used to describe the behavior 

https://CI=[0.83
https://CI=[0.67
https://CI=[0.50
https://accuracy=0.50
https://mean=0.76
https://std=0.20
https://mean=0.80
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Figure 4: Most common human (top) and AI (bottom) codes. 

in Figure 4. Most commonly, people use the following labels to 
describe human-like behavior (in decreasing order of frequency): 
related to human play, smooth physical movement, goal direct, 
other, and logical reasoning. In contrast, people most commonly 
use the following labels to describe AI behavior (in decreasing order 
of frequency): jerky physical movement, non-related to human play, 
other, goal indirect, and illogical reasoning. These fndings suggest 
that there are clear diferences in how people characterize human 
vs. AI behavior. In fact, the labels that are foils to one another 
occur most frequently (e.g., smooth physical movement and jerky 
physical movement), which indicates that people generally rely 
on the same high-level qualities to distinguish between AI- and 
human-generated behavior. 

4.2.2 Mistakes. We further decompose the responses based on 
whether the human assessor correctly identifed the agent as be-
ing human or not (Figures 5a and 5b). When assessors correctly 
identify human-generated behavior (Figure 5a top), they use the 
following identifers most frequently (in descending order): smooth 
physical movement, related to human play, goal direct, other, and 
logical reasoning. In contrast, when they are mistaken, they most 
commonly use: related to human play, smooth physical movement, 
goal direct, other, and logical reasoning. One assessor (incorrectly) 
noted, “Video B has less accurate and precise moves. Thus, it refects 
more human-like moves.” 

When assessors correctly identify AI-generated behavior (Fig-
ure 5b top), they most commonly refer to jerky physical movement, 
non-related to human play, other, goal indirect, and object hit. In 
contrast, when assessors falsely identify AI-generated behavior, 
they most commonly refer to jerky physical movement, non-related 
to human play, other, wall hit, and goal direct. Overall, the rank-
ing of these is more stable than for human codes, suggesting that 
human assessors may have a more stable notion of characteristics 
that constitute AI behavior. 

4.2.3 More Human-like AI. We now investigate whether assessors 
characterize behavior diferently depending on how human-like 
an AI is, as defned by passing or failing the HNTT. We examine 
which codes are used to describe human play within both settings: 
passing or failing the HNTT. Figure 6a depicts the most common 
human codes in both of these settings, and Figure 6b shows the 
most common AI codes in both of these settings. 

(a) 

(b) 

Figure 5: (a) Most commonly-used codes for correct human 
labels (top) and incorrect human labels (bottom). 
(b) Most commonly-used codes for correct AI labels (top) and 
incorrect AI labels (bottom). 

We examine the codes that judges use to describe human-like be-
havior in both of these settings. When the agent passes the HNTT, 
the judges more frequently mention related to human play, smooth 
physical movement, and goal direct, compared to when the agent 
fails the HNTT. Interestingly, judges mention jerky physical move-
ment more when the agent passes the HNTT compared to when 
the agent fails the HNTT. When describing AI behavior, judges 
mention jerky physical movement, non-related to human play, and 
smooth physical movement when the agent fails the HNTT com-
pared to when the agent passes the HNTT. Taken together, these 
results suggest that assessors may have a notion of what constitutes 
human play but struggle to describe specifc clues when presented 
with a more human-like AI. 

These codes are also quite unstable: the relative frequencies of 
the use of these codes varies across studies. In contrast, the codes 
used to describe AI play within both settings appear more stable. 
This suggests that expectations about AI behavior may be more 
stable than those for human behavior. Rephrased, people may have 
a more rigid understanding of what constitutes AI behavior. 
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(a) 

(b) 

Figure 6: (a) Most common Human codes for agent that fails 
HNTT (top) and agent that passes HNTT (bottom). 
(b) Most common AI codes for agent that fails HNTT (top) 
and agent that passes HNTT (bottom). 

5 CONCLUSION 
In this work we present a behavioral study based on the Human 
Navigation Turing Test (HNTT), comprising of hundreds of human 
assessments of human and AI behaviors in a 3D navigation task. We 
present an AI agent that passes the HNTT in contrast to an AI agent 
that fails the HNTT, and run a qualitative assessment of free-form 
responses associated with this comparison. Our fndings show clear 
diferences in how human assessors perceive AI vs. human behav-
ior. At the highest level, the behaviors “jerky physical movement” 
and “non-related to human play” were more frequently associated 
with AI, whereas “related to human play” and “smooth physical 
movement” were more frequently associated with human behavior. 
Breaking this down further we evaluate assessor mistakes. When 
assessors incorrectly identify the AI agent as a human, the top two 
behaviors are “related to human play” and “smooth physical move-
ment”, which align with the strongest associated human behaviors. 
When they incorrectly identify a human as an AI agent, the top two 
behaviors are “jerky physical movement” and “non-related to hu-
man play”, which align with the strongest associated AI behaviors. 
Finally, we compare an agent that fails the HNTT (hybrid) against a 
more human-like agent (reward shaping) that passes the HNTT. We 

fnd some nuance in the way assessors consider “human play” in 
this comparison, suggesting that assessors have a notion of human 
play but struggle to identify this more precisely. Our fndings sug-
gest that perceived characteristics of AI behavior are more stable 
than those of human behavior. One limitation of our work is the 
analysis is based on one benchmark; results may difer for diferent 
scenarios. Nevertheless, our work opens up exciting opportunities 
for deeper understanding of how humans assess human-likeness. 
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A SUPPLEMENTAL RESEARCH METHODS 

A.1 Human Navigation Data 
Here we provide supplemental details that expand on Section 3.1, 
detailing sampling and post-processing. We sampled human player 
data from the sample published by Devlin et al. [9] with the aim to 
avoid potential biases. Potential biases could be introduced, e.g., in 
cases of noticeable diferences between the human and AI data (e.g., 
systematic diferences in video length or quality that are unrelated 
to the actual navigation behavior). Human videos were sampled 
from the 40 videos published under their “study 1” protocol. We 
excluded videos shorter than 10 seconds (as these were found to be 
too short to assess navigation quality in pilot studies). We matched 
goal locations with those of AI agent videos (see Section 3.1). We 
applied post-processing in line with the procedure of Devlin et al. 
[9]): This included masking any identifying information, adding a 
“For Research Purposes Only" watermark, and cutting out the last 
few seconds of the human videos (this was to correct an efect of the 
data collection process where the human players had to manually 
end their recording, artifcially adding a few seconds at the end of 
the videos). 

A.2 AI Agents and Navigation Data 
This section provides supplementary information to the agent ar-
chitectures discussed in Section 3.1, and summarizing the symbolic 
and hybrid agents introduced in Devlin et al. [9]. We frst overview 
the high level approach shared by all three agents (the symbolic and 
hybrid baseline agents and our novel reward shaping agent), and 
then discuss individual agents in turn. Finally, we provide details 
on our distributed agent training process, which enables scalable 
training in complex video games. 

A.2.1 Shared agent architecture. We follow a reinforcement learn-
ing (RL) approach [1], a popular machine learning approach that 
focuses on agents learning to interact with an environment through 
trial and error, which has been shown to lead to efective navigation 
in complex game settings. Following Devlin et al. [9], we use the 
popular RL algorithm Proximal Policy Optimization (PPO) [23], 
one of the most commonly current state-of-the-art approaches and 
one found to be empirically robust and efective in a wide range of 
tasks. 

The key components needed to specify a RL method are the 
observation space (i.e., information perceived by the agent, its input), 
action space (i.e., how the agents afects the world, its output), and 
reward signal (i.e., the feedback the agent receives after trying a 
course of action, its learning signal). These are defned in turn for 
the three agents used in this work. 

A.2.2 Symbolic agent. Our frst baseline agent is the symbolic 
agent from Devlin et al. [9]. Its observation space consists of 6 
symbolic inputs (relative angle and distance to goal, numerical vi-
sual frame depth average, player’s current x,y,z coordinates). The 
agent’s action space is represented by 8 discrete actions, allowing 
the agent to stand, move forward or turn left/right by a given set of 
discrete angles (±0.4, ±0.7, ±1.0), where ±1.0 represents a ±90°angle. 
The reward signal is designed to encourage progress towards, and 
successful navigation to the goal and consists of the following: a 
-0.01 per step penalty, a penalty of -1 for dying, an incremental 

https://doi.org/10.1007/978-0-387-30164-8_731
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Figure 7: Architecture of the reward-shaping agent. 

Figure 8: Hybrid, symbolic, and reward-shaping models con-
verge to approximately optimal policies – we report episode 
length average and standard deviation (for reward-shaping, 
N=3; for hybrid and symbolic, N=4). All plots are smoothed 
with a rolling windows of 200. 

reward for approaching the goal and a +1 reward for reaching the 
goal. 

A.2.3 Hybrid agent. Our second baseline agent is the hybrid agent 
from Devlin et al. [9]. It difers from the symbolic agent only in 
its observation space. In addition to the symbolic observations, 
the agent receives a 32x32 cropped depth bufer visual input. The 
visuals present a third-person view of the agent in the environ-
ment. To process this additional visual channel, the hybrid agent 
is equipped with a convolutional neural network which learns to 
extract high level visual features which are then concatenated with 
a representation of the symbolic inputs. 

A.2.4 Distributed agent training. To efectively train agents in a 
complex video game setting we use a distributed approach lever-
aging an in-house sample collection framework and Azure cloud 
resources. Training samples are being collected from a scaleset of 
20 low priority virtual machines (Azure NV6), each running 3 video 
game instances. The samples are then sent to one training head 
node, an Azure E32s virtual machine. 

B SUPPLEMENTAL RESULTS 

B.1 AI Agent Training 
We provide additional results that confrm the efectiveness of our 
agent training. As discussed in Section 3.1, we considered three 
agents: the symbolic and hybrid baseline agents from Devlin et al. 
[9], and our proposed reward shaping agent, designed to minimize 
noticeable diferences between agent and human behavior. 

Figure 8 shows training curves for all three agents. We observe 
that the mean episode length decreases with training for all three 
agents, which shows that all three agents achieve high profciency 

Figure 9: Uncertainty of human judges’ assessment of hu-
man likeness. 

on the task. Learning is slower for the reward-shaping agent, which 
can be accounted for by the need to learn to optimize a more com-
plex reward signal. The lowest mean episode length at the end of 
training is obtained by the hybrid agent, however, as demonstrated 
by Devlin et al. [9], high task performance is not necessarily aligned 
with human-likeness. 

Our results demonstrate that all three agents learn to efectively 
solve the navigation task, paving the way to our qualitative and 
quantitative study of the human-likeness of the learned behaviors. 

B.2 Replication of HNTT Studies 
We replicated Studies 1 and 2 from Devlin et al. [9] on the Amazon 
Mechanical Turk platform to verify that our switch to crowdsourc-
ing did not signifcantly impact the validity of our fndings. Table 
3 summarizes the results. Our analysis shows no signifcant dif-
ferences in judges accuracy in distinguishing human from agent 
behavior, validating our approach. 

Interestingly, we see a small but statistically signifcant decrease 
in participants self-assessed level of uncertainty across both studies 
(Study 1 U=580, p=0.045; Study 2 U=478, p=0.003), indicating that 
crowdsourcing workers are more certain of their judgments. This is 
likely to result from the wider population from which participants 
are drawn in this setup. Factors impacting self-expressed uncer-
tainty are an interesting topic for further study. For the purpose 
of this study, we increased sample sizes for our follow up studies 
to counter any potential increases in variance that could poten-
tially result from a more diverse population or a higher level of 
uncertainty in judgments. 

B.3 Human Navigation Turing Test: 
Uncertainty 

Here we provide supplementary results on the self-reported un-
certainty of judges assessing human-likeness (Figure 9). Human 
judges reported the highest average uncertainty when assessing 
our reward shaping agent (mean=2.21, std=0.66) in comparison to 
the symbolic (mean=2.15, std=0.65, U =2122.0, p=0.223) and hybrid 
(mean=1.85, std=0.56, U =1576.5, p= 0.001) agents. Note however 

https://std=0.56
https://mean=1.85
https://std=0.65
https://mean=2.15
https://std=0.66
https://mean=2.21
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Accuracy Uncertainty Hybrid vs Symbolic 

Replication Study 1 (n=50) 0.76 (0.24) 1.85 (0.56) 0.72 (0.28) 
ICML Study 1 (n=30) 0.84 (0.16) 2.08 (0.47) 0.78 (0.25) 

Mann-Whitney U test U=636.0, p=0.120 U=580.0, p=0.045 U=690.0, p=0.156 

Replication Study 2 (n=50) 0.80 (0.20) 2.15 (0.65) 0.72 (0.32) 
ICML Study 2 (n=30) 0.77 (0.16) 2.66 (0.84) 0.62 (0.30) 

Mann-Whitney U test U=653.5, p=0.160 U=478.0, p=0.003 U=626.5, p=0.052 

Table 3: Comparing results between the studies from Devlin et al. [9] and our replication of those studies on MTurk. Results 
reported here are the mean (and standard deviation) of accuracy, uncertainty, and hybrid vs symbolic agent human-likeness 
judgments, including signifcance tests for each comparison. 

that uncertainty is signifcantly higher only when compared to 
the hybrid agent. The statistical measures throughout are Mann-
Whitney U tests with Bonferroni corrections to account for multiple 
comparisons. 

B.4 HNTT Supplemental Material 
The HNTT was conducted as an online survey with the follow-
ing sections: an introduction page with a required consent form, a 
comprehension page including the questions in Figure 10a, a back-
ground page with brief details about the specifed video game, a 
familiarity page with the questions in Figure 10a, and fnally 10 
HNTT trials with 3 questions each, as illustrated in Figure 10b. All 
questions were marked required. The survey format was kept the 
same as in Devlin et al. [9] to allow comparisons with their results. 

B.5 Mechanical Turk Task Instructions 
Below is the full text of the MTurk task instructions given to par-
ticipants: 

"We are conducting a survey on navigation in video games for a 
research project. Please read the Description and Requirements, 
and then select the link below to complete the survey. At the end 
of the survey, you will receive a code to paste into the box below 
to receive credit for taking our survey. 

Description: 

• Overview: The survey is anonymous and includes a required 
consent form, comprehension check, some background info, 
and 10 video sections with 3 questions each. All questions 
are marked *required. 

• Time required: about 30 minutes. 
• Compensation: you will receive a fxed compensation of 
$6.50 for completing the task, with potential for a $1 bonus 
for a high-quality response. For example, copy/pasting an-
swers, or responses that are not specifc to the videos on 
each page, will not get the bonus. 

• The MTurk HIT has a 1-hour duration. It will not allow you 
to submit after 1-hour has passed (remember to submit or 
return HITs within 1-hour so you don’t time out!) 

• If you start the task but change your mind, you may ter-
minate your participation at any time and return the HIT 
within 1-hour, but you will not be paid for returned HITs or 
partial completions. 

Requirements: 
• You must complete all the questions. 
• You must not have previously completed a HIT called "Navi-
gation Turing Test (NTT)". Repeat participants are ineligible 
and will not be paid. 

• You cannot participate from tablets or mobile phones. 
Make sure to leave this window open as you complete the 
survey. When you are fnished, you will return to this page to 
paste the code into the box.” 
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(a) (b) 

Figure 10: Screenshots of HNTT survey questions. (a) shows the comprehension and familiarity questions (asked once per 
participant). (b) shows one HNTT trial with 3 questions. Screenshots are not representative of actual game play or visuals. 
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